
CS331: Algorithms and Complexity
Part III: Dynamic Programming

Kevin Tian

1 Introduction
In these notes, we introduce our second main paradigm in designing algorithms: dynamic program-
ming (DP).1 DP is a more efficient variant of recursion, that uses a technique called memoization2

to reduce runtimes. To motivate it, observe that most recursive algorithms are implicitly written in
a top-down fashion, e.g., RecursiveAlgo (Algorithm 2, Part II) on large inputs calls RecursiveAlgo on
smaller inputs multiple times. However, correctness of recursive algorithms is actually established
bottom-up; we first make sure that the base case is solved correctly, and then repeatedly obtain
correctness of larger calls using our solutions on smaller inputs. Notably, multiple larger calls to
the algorithm can depend on correctness of the same smaller call. In such cases, it is less wasteful
to remember which subproblems we have already solved, and reuse them when needed.

Memoization makes this observation algorithmic: whenever we have solved a recursive subprob-
lem, we explicitly store the solution so we never have to compute it again. As we will see, this
simple strategy can lead to drastic runtime savings for many problems, that can require solving
subproblems exponentially many times if implemented less carefully. As an example, consider the
Fib(n) problem from Section 5.3, Part II. Algorithm 1 gives a naïve implementation.

Algorithm 1: FibNaive(n)

1 if n ≤ 1 then
2 return n + 1
3 end
4 return FibNaive(n− 2) + FibNaive(n− 1)

Unfortunately, while it outputs the correct solution, the top-down recursion used by FibNaive takes
exponential time to execute. This is because each recursive call in Line 4 blows up the number of
calls to FibNaive(1) or FibNaive(0) by a constant factor. To see this, we can prove inductively that
the number of calls to FibNaive(1) or FibNaive(0) used by FibNaive(n) is Fn−1, following Eq. (24),
Part II. This number grows exponentially in n by Lemma 14, Part I.

However, a moment’s thought should convince you that Fib(n) is implementable in polynomial
time using a smarter recursion strategy. There are only n distinct subproblems we ever need to
solve in the computation path for returning Fib(n): namely, Fib(i) for all 0 ≤ i ≤ n−1. Therefore,
rather than starting over from scratch each time, we should implement our recursion from the
bottom-up, and remember any earlier solutions. This is carried out in Algorithm 2. As discussed
in Section 5.3, Part II, Algorithm 2 only requires O(n2) time under standard arithmetic models,
further improvable via matrix multiplication. This is an exponential speedup of Algorithm 1.

We give many example applications of DP in these notes. In each case, to design a DP algorithm,
we follow a very similar template to how we came up with Algorithm 2.

1. First, come up with any recursive algorithm that solves the problem correctly.
1This term was coined by Richard Bellman when working at RAND Corporation under the Air Force. Bellman

supposedly chose this name in an attempt to convince his supervisors that he was not doing math at his job.
2To my knowledge, this word (a synonym of the confusingly similar “memorization”) is only used in DP contexts.

It is attributed to Donald Michie, and signifies turning subproblem solutions into “memos” for future use.

1

Algorithm 2: FibBasic(n)

1 L← Array.Init(n + 1) // L[i] will later store the (i− 1)st Fibonacci number, for all i ∈ [n+ 1].
2 L[1]← 1
3 L[2]← 2
4 for 3 ≤ i ≤ n + 1 do
5 L[i]← L[i− 2] + L[i− 1]
6 end
7 return L[n + 1]

2. Next, examine the structure of the recursive algorithm when working from the bottom-up.
Can you reuse subproblem solutions to shortcut future computations? If so, memoize them.

3. Finally, look for ways to further shortcut the recursion. Is there a more concise way to define
the subproblems you care about, that lessens the number of recursive calls?

This framework seems very straightforward, but as we will see, there can be significant ingenuity
involved in applying it. The two main degrees of freedom we have when designing a DP solution
are: how do we define the subproblems we care about (the basic unit of memoization), and in
what order do we solve them? It can be surprisingly tricky to answer these questions in a way that
yields the fastest algorithm. In these notes, we focus on giving examples of applications that are
representative of common strategies for solving DP problems as efficiently as possible.

2 Arrays
As an introduction, we present two simple but very common DP problems on arrays. Both problems
admit straightforward polynomial-time solutions that can be sped up significantly via memoization.

2.1 Largest jump
In the largest jump problem, we are given as input L, an Array of n numbers in R. The goal is to
output the maximum possible value of L[j] − L[i], where indices (i, j) satisfy 1 ≤ i ≤ j ≤ n. For
example, the entries of L could represent stock prices on n different days, and the largest jump
problem corresponds to the largest profit margin one can achieve by buying stocks on day i and
selling on day j. Note that we require j ≥ i (e.g., you must have bought stocks to sell them), and
also that the largest jump is always nonnegative (since we allow taking j = i).

Let us instantiate our plan from Section 1. We first observe that there is a simple O(n2) time
solution: we can compute L[j]− L[i] for all pairs 1 ≤ i ≤ j ≤ n and remember the maximum.

Next, let us re-examine these
(
n
2

)
+ n = Θ(n2) subproblems to search for repeated structure.

Many of them have a common endpoint: for example, we need to solve all the subproblems L[j]−
L[1], L[j]−L[2], . . . , L[j]−L[j]. The purpose of solving these subproblems can be summarized as:
suppose the largest jump ended on index j ∈ [n]. Then, we need to find the smallest entry before
L[j], mini∈[j] L[i]. Solving this problem tells us the starting index of the largest jump.

We thus have a new set of O(n) subproblems describing the entire largest jump problem. Let S
be an Array of n numbers in R, where S[j] = maxi∈[j] L[j] − L[i] = L[j] −mini∈[j] L[i] stores the
largest jump ending on index j. If we can compute S in O(n) time, then we can pass over S to
determine the largest jump. Moreover, to compute S[j], we just need mini∈[j] L[i]. We can iterate
over L and maintain a running minimum value, and use it to compute each S[j] in O(1) time.

Roughly speaking, the idea was to define a set of n “special” subproblems, encoded by the entry of
S, out of all of the Θ(n2) possibilities. These special subproblems have the property that if they
are computed in a certain order, each can be solved in O(1) time. Specifically, this was done by
maintaining a running minimum mini∈[j] L[i], and using the formula S[j] = L[j] − mini∈[j] L[i].
The key observation is that mini∈[j] L[i] can be recomputed in O(1) time as we increment j.

2

Building upon this observation, there is a simpler, direct recursive formula for the entries S[j]:

S[j] = max
i∈[j]

L[j]− L[i] = max

(
0, max

i∈[j−1]
L[j]− L[i]

)
= max

(
0, L[j]− L[j − 1] +

(
max

i∈[j−1]
L[j − 1]− L[i]

))
= max (0, L[j]− L[j − 1] + S[j − 1]) .

(1)

The first line treated the two cases i = j and i ∈ [j−1] separately, the second added and subtracted
L[j − 1], and the third used the definition of S[j − 1]. Applying (1) repeatedly gives a one pass
algorithm for computing the largest jump in O(n) time, stated as Algorithm 3.

Algorithm 3: LargestJump(L)

1 Input: L, an Array instance containing n := |L| numbers in R
2 S ← Array.Init(n)
3 S[1]← 0
4 jump← 0
5 for 2 ≤ j ≤ n do
6 S[j]← max(0, L[j]− L[j − 1] + S[j − 1])
7 jump← max(jump, S[j])

8 end
9 return jump

In summary, we arrived at this solution by noticing that, although the largest jump is most
naturally defined as a maximum of

(
n
2

)
+ n numbers that all take O(1) time to compute, it is

also the maximum of n potentially more complicated numbers: the entries of S in Algorithm 3.
Therefore, we can treat computing each S[j] as our new basic subproblem. Naïvely computing each
S[j] = maxi∈[j] L[j]−L[i], defined as a maximum over j numbers, would require O(j) = O(n) time.
However, we observed that the recursive formula (1) casts S[j] as the maximum of two numbers,
rather than j numbers as before. These two numbers can be computed in O(1) time if we proceed
over the subproblems S in order, via memoization of the earlier solution S[j − 1]. Situations like
this one, where there is a natural “special” subproblem that is solvable using a previous subproblem
and a small additional amount of effort, are excellent targets for DP-based solutions.

2.2 Largest subsequence sum
In the largest subsequence sum problem, we are again given as input L, an Array of n numbers
in R. The goal is to output the maximum possible value of

∑j
k=i L[k], where indices (i, j) satisfy

1 ≤ i ≤ j ≤ n. This is a classic algorithms interview question, and has a fun history rooted in
computer vision [Wik24b]. The naïve algorithm computes the subsequence

∑j
k=i L[k] in O(n) time

for each of the
(
n
2

)
+ n = O(n2) index pairs (i, j), and takes O(n3) time in total.

We can obtain significantly faster algorithms using DP. A basic idea is to treat each subproblem as
computing a subsequence sum

∑j
k=i L[k], and see if we can reuse solutions. Indeed,

∑j
k=i L[k] =

L[j] +
∑j−1

k=i L[k], so we can compute the former in O(1) time if given the latter. Moreover, all the
base cases (i, i), i.e., L[i] =

∑i
k=i L[k], take O(1) time to compute. There are many ways to solve

subproblems so that (i, j − 1) occurs before (i, j), whenever j ≥ i + 1. For example, we can first
solve all base cases, and then solve all of the pairs (1, j) for j ≥ 2 in order, all of the pairs (2, j)
for j ≥ 3 in order, and so on. This already brings down the runtime to O(n2).

We present a linear-time solution attributed to Jay Kadane. The idea is essentially the same as in
Section 2.1. Let S be an Array of n numbers, such that S[j] is the largest subsequence sum that
ends on L[j]. We can instead treat computation of each S[j] as one of our DP subproblems, so
there are n subproblems in total. Does knowledge of S[j − 1] help with computing S[j]?

There are two cases: a subsequence ending on L[j] either does not include L[j − 1], or it does.
There is only one subsequence with the former property: L[j] itself. Moreover, every subsequence
sum of the latter type is just the sum of L[j] and a subsequence sum that ends on L[j − 1]. The

3

largest subsequence sum ending on L[j−1] is S[j−1] by definition, leading to the recursive formula

S[j] = max (L[j], S[j − 1] + L[j]) . (2)

Therefore, we can compute each S[j] in O(1) time if we loop over the j ∈ [n] incrementally. This
gives an O(n) time algorithm for largest subsequence sum, as claimed. Again, the key insight
leading to this solution was that the largest subsequence sum can be written as the maximum of
just O(n) numbers, each of which can be efficiently computed via memoization.

3 Sets
In Section 2, we saw two examples of applications in arrays where DP leads to a polynomial factor
runtime savings over the straightforward algorithm (e.g., O(n) vs. O(n2) time). In this section, we
give several examples of DP applications in sets, where the savings are substantially more dramatic.
In each case, the goal is to return a subset of a set of size n, that is optimal according to some
criterion. The straightforward approach would try every subset as a candidate, but this quickly
becomes intractable for moderate n, as there are 2n candidate subsets.

By more carefully defining subproblems of interest and using DP, we show how to design efficient
polynomial-time algorithms for these problems. In each case, the key insight is to recursively
eliminate large portions of the candidate solution space (i.e., all possible subsets) by imposing
additional structure on the subproblems we consider, so that there are much fewer subproblems.

3.1 Scheduling
In the scheduling problem, we are given as input a set L, an Array of n tuples. The ith tuple is
denoted (`i, ri) ∈ R2 and satisfies `i < ri, for all i ∈ [n]. Each tuple specifies the endpoints of
a closed interval [`i, ri] ⊂ R. The goal is to the maximum size |T | of a subset T ⊆ [n] with no
overlapping intervals, i.e., for all i, j ∈ T with i 6= j, we have [`i, ri] ∩ [`j , rj] = ∅.

To motivate the problem, suppose you are a professor and are advising n students. The ith student
wants to meet from time `i to time ri, but you can only meet with one student at a time. The
scheduling problem asks: what is the maximum number of your students that you can meet with?

At first, it is unclear that scheduling is even solvable in polynomial time. As mentioned earlier, the
straightforward solution checks each subset T ⊆ [n] for whether it contains overlaps, and if it does
not, compares |T | to a running maximum. This takes O(2n) time due to the number of subsets.

Following our plan from Section 1, let us try to define a small (polynomial-sized) set of recursive
subproblems which correctly solves scheduling. Based on our development in Section 2, a reasonable
attempt is to let S be a length-n Array where S[i] stores the maximum size of a non-overlapping
subset that includes the ith interval [`i, ri]. However, this strategy immediately runs into two major
issues. First, how do we recursively compute S[i]? If an optimal subset includes the ith interval, all
we can can conclude is that it does not contain any other intervals that overlap with [`i, ri]. This
information is not contained in any of the other subproblems S[j], and seems to require defining
more subproblems, which quickly can blow up into an exponential number of subproblems. Second,
there is no natural order that we should recursively solve these subproblems in.

A slight modification to our subproblem definitions addresses both issues simultaneously. Recall
from Section 2 that our DP subproblems were naturally ordered: each subproblem was the optimal
solution on a prefix of the array. We can employ a similar prefix-based solution here, after first
sorting the input list L to induce an ordering. There is a design decision to be made: should
we sort intervals in L by their left endpoint (i.e., start time) or right endpoint (i.e., end time)?
The answer is clearly whichever lets us recursively solve subproblems most efficiently. As we will
explain shortly, it turns out to be more useful to sort entries by their right endpoint.

We are ready to explain how to solve scheduling via DP. Suppose first that L has been sorted by
right endpoint, so that ri ≤ rj for each pair of intervals with 1 ≤ i < j ≤ n. This takes O(n log(n))
time using, e.g., MergeSort (Algorithm 5, Part II). Moreover, suppose that for each i ∈ [n], we have
computed P [j], the largest index i such that ri < `j (if there are no such indices, we let P [j] = 0).
In other words, P [j] is the last interval in L that has ended before the jth interval begins. We can

4

compute P in O(n log(n)) time using binary search, since for each `j , we can determine which two
indices ri, ri+1 it fits in between using O(log(n)) time, using the sorted list of right endpoints.

We now define our DP subproblems. Let S be a length-n Array, such that for all j ∈ [n], S[j]
stores the maximum size of a non-overlapping subset of L[: j], which we use to denote the prefix
subarray consisting of the first j intervals in L. We claim that

S[j] = max (S[j − 1], 1 + S[P [j]]) , (3)

for all j ∈ [n], where S[0] := 0. To see why, consider the optimal scheduling solution over L[: j].
There are two cases, depending on whether the largest subset includes S[j]. If it does not contain
S[j], then the solution equals S[j − 1], i.e., the best solution in L[: j − 1], the first case in (3).

Otherwise, the optimal solution contains S[j], and hence it cannot include any intervals that overlap
with [`j , rj]. We should therefore drop any such intervals from consideration in this case. However,
we know exactly which intervals are not dropped: they are precisely the prefix L[: P [j]], i.e., the
intervals with indices 1, 2, . . . , P [j]! This is because the intervals are sorted by their right endpoint,
and we know P [j] is the last interval whose right endpoint occurs before `j . This also explains
why we sorted L by right endpoint values: otherwise, the set of intervals ending before L[j] begins
is not a prefix of L, whereas here, we recursively only need to consider solutions in L[: P [j]].

In conclusion, our DP solution has three steps: sorting L by right endpoint, computing the indices
P , and recursively applying the formula (3) to solve our subproblems. The answer to our original
scheduling problem is contained in S[n], as it is optimal for the first n intervals in L, i.e., the entire
list. We provide pseudocode in Algorithm 4, assuming for simplicity L has been pre-sorted.

Algorithm 4: Scheduling(L)

1 Input: L, an Array instance containing n := |L| tuples {(`i, ri)}i∈[n] ⊂ R2 with `i < ri for all
i ∈ [n], sorted by right endpoint so that ri ≤ rj for all 1 ≤ i < j ≤ n

2 P ← Array.Init(n)
3 S ← Array.Init(n)
4 for j ∈ [n] do
5 P [j]← i where i ∈ [n] is the largest index such that ri < `j , or i = 0 if `j ≤ r1
6 end
7 for j ∈ [n] do
8 S[j]← max(S[j − 1], 1 + S[P [j]]), where S[0] := 0

9 end
10 return S[n]

Let us now recap the runtime analysis of Algorithm 4. Pre-sorting the list L using MergeSort takes
O(n log(n)) time, and each loop of Lines 4 to 6 takes O(log(n)) time, since we need to search for
where to insert `j into the sorted list of {ri}i∈[n], solvable via binary search. Finally, each loop of
Lines 7 to 9 takes O(1) time, since we have precomputed P [j] < j and S[j − 1]. Thus, the overall
runtime is O(n log(n)), dominated by the cost of sorting L and computing P .

This is a ridiculously large improvement to a problem which originally appeared to take exponential
time. In hindsight, the way we obtained this improvement is by severely restricting the kinds of
“special” subsets we are interested in: the largest size non-overlapping subsets restricted to each of
the prefixes L[: j]. This seems like a strong ask, but fortunately the largest prefix-restricted sizes
can be recursively computed using the formula (3). This formula, which encodes a decision on
whether to include L[j] in the optimal subset, luckily also results in a natural efficient algorithm.

Weighted scheduling. Algorithm 4 extends straightforwardly to solve the weighted scheduling
problem, where each entry i ∈ [n] of the input L contains a weight wi in addition to two endpoints
of an interval [`i, ri]. The goal in weighted scheduling is to output a subset T of L with maximum
weight w(T) :=

∑
i∈T wi, such that no two intervals in T overlap. For example, weighted scheduling

captures the problem of maximizing the total length of all the intervals in our subset, by defining
weights wi = ri − `i for all i ∈ [n]. Moreover, weighted scheduling generalizes the standard
scheduling problem, which corresponds to weights wi = 1 for all i ∈ [n].

5

The idea is essentially identical to the unweighted case, where we first assume that L has been
sorted by right endpoint. Next, we let each subproblem S[j] for j ∈ [n] correspond to the maximum
weight of a non-overlapping subset of the first j intervals in L. Again, to solve subproblem S[j],
we take the better of the case where the jth interval is not included (so the maximum weight
achievable is S[j − 1]), and the case where it is included (so the maximum weight achievable is
wj + S[P [j]]). This gives rise to the following recurrence, generalizing (3):

S[j] = max(S[j − 1], wj + S[P [j]]).

Replacing Line 8 of Algorithm 4 with the above solves weighted scheduling in O(n log(n)) time.

Recovering an optimal solution. Our algorithm so far has only produced the value of the
optimal solution (i.e., the size or total weighted value of the set T), rather than the solution itself
(i.e., the set T). There is a simple way to augment Algorithm 4 to reconstruct the optimal solution.

First, observe that we can store in each S[j], in addition to the value of the optimal prefix solu-
tion, enough information to remember which subproblem we built upon to achieve this optimum.
Specifically, we can let each S[j] store two fields: (val, case), where S[j].val contains the optimal
value as before. Moreover, S[j].case = 1 or 2, depending on whether S[j] = S[j − 1] (case 1) or
S[j] = 1 + S[P [j]] (case 2). Using this extra information, we can work backwards from S[n] to
recover the optimal set, by either including S[j] or not (if S[j].case = 2 or 1, respectively), and
continuing to either S[j − 1] or S[P [j]] to continue building the solution.

In fact, we do not even need to store this extra information in S[j].case, because we can check which
case we are in “on the fly” by recomputing the two values in (3) and checking which equals the value
in S[j]. We provide pseudocode which uses this simpler reconstruction strategy in Algorithm 5,
where the input consists of memoized subproblem solutions P and S from Algorithm 4.

Algorithm 5: RecoverSchedule(P, S)

1 Input: P, S, the contents of variables initialized on Lines 2 and 3 after Algorithm 4 returns
2 T ← ∅
3 j ← n
4 while j 6= 0 do
5 if S[j] == S[j − 1] then
6 j ← j − 1 // New goal: recover the subset leading to the subproblem solution S[j − 1].
7 end
8 else
9 T ← T ∪ {i}

10 j ← P [j] // New goal: recover the subset leading to the subproblem solution S[P [j]].

11 end
12 end
13 return T

3.2 Longest increasing subsequence
In the longest increasing subsequence problem, we are given as input L, an Array of n numbers in
R. The goal is to output the maxmium size of a subset T ⊆ [n], such that for all i, j ∈ T with
i < j, we have L[i] ≤ L[j]. In other words, we want to find the maximum length of a subsequence
of L that is in sorted order, when L itself is potentially unsorted. This fundamental algorithmic
problem is commonly used as a subroutine in other applications, see e.g., discussion in [Wik24a].

It is not obvious that this problem is solvable in polynomial time, as the straightforward approach
is to try all subsets of [n]. However, again we will be able to use DP to dramatically speed up our
solution. Analogously to the scheduling problem, it is natural to define a set of n subproblems on
prefixes. Specifically, let S be a length-n Array, such that for all j ∈ [n], S[j] stores the largest
length of an increasing subsequence that ends on (and includes) L[j]. Once we have computed S,
we can take a single pass and return maxj∈[n] S[j] in O(n) time.

However, computing S[j] involves its own recursive choice of which subproblem to skip to. That
is, how should we continue building the longest increasing subsequence once L[j] is included? In

6

each of (1), (2), and (3), this recursion only involved two cases. In scheduling, for example, the
optimal solution including the jth interval must necessarily exclude all of the overlapping intervals
P [j] + 1, P [j] + 2, . . . , j − 1, so we can skip from S[j] directly to S[P [j]]. In the longest increasing
subsequence problem, it is less clear which subproblem we should skip to after including L[j], as
any of the L[i] ≤ L[j] with i < j could potentially be used to continue growing the subsequence,
with different tradeoffs. Taking a larger value of the index i may be a bad idea if L[i] itself is small,
whereas taking a smaller i would exclude more entries from consideration.

Fortunately, if we solve subproblems S[j] sequentially (i.e., one at a time while incrementing j),
we can simply try all of the possible continuations. Indeed, we claim:

S[j] = 1 + max
i∈[j−1]
L[i]≤L[j]

S[i], (4)

for all j ∈ [n] (the max evaluates to 0 if L[j] is minimal in L[: j]). To see this, the longest increasing
subsequence ending on S[j] must have second-to-last entry L[i], for some i < j satisfying L[i] ≤ L[j].
Moreover, if we know that the second-to-last entry is L[i], then the longest subsequence we can
make just appends L[j] to the longest subsequence ending on L[i]. Therefore, S[j] = 1 + S[i] for
whichever S[i] is largest among the L[i] that could be included, exactly as (4) computes.

When computing S[j] sequentially, we have already memoized all of the S[i] for all i ∈ [j − 1].
Thus, evaluating the formula (4) takes O(j) = O(n) time, so looping over all j ∈ [n] requires O(n2)
time total. Our algorithm thus far only returns a length rather than a subsequence, but a strategy
similar to Algorithm 5 recovers the longest subsequence once we have computed S.

Schensted’s algorithm. In fact, the longest increasing subsequence problem can be solved in
O(n log(n)) time, by implementing (4) more cleverly. We give an algorithm due to [Sch61] which
proceeds in n iterations, indexed by an iteration count j ∈ [n]. We maintain a subproblem solution
array S, with the following invariant: after iteration j ∈ [n] is done, S[k] contains the smallest
possible last value in a length-k increasing subsequence of L[: j]. This guarantee holds for all
k ∈ [K], where K is the largest possible length of an increasing subsequence of L[: j].

We now give some intuition for how one could come up with this definition. When evaluating the
formula (4), we consider j − 1 potential increasing subsequences (the longest ones ending on each
L[i]), but the formula (4) does not need to know very much about these subsequences. In particular,
it only cares about their lengths and last entry values. This fact motivates our new subproblem:
the claim is that it suffices to keep the last value as small as possible for a subsequence of a given
length. As we will see, this invariant dramatically speeds up each iteration of the algorithm.

There is a helpful way to visualize this process as maintaining K distinct stacks, each containing
the current S[k] values at their heads. First, K ← 1, and we place L[1] on the first stack. Next,
in the jth step for j ≥ 2, we iterate over the stacks and check if it is possible to create a length-k
increasing subsequence of L[: j] with a smaller last value. If so, we place the new smallest value on
top of the stack, and replace S[k]. If K increments (i.e., it is newly possible to create a length-K+1
increasing subsequence), we create a new stack with the last value in the subsequence. Observe
that S is always in sorted order, because given a length-k increasing subsequence of L[j], we can
remove its kth term to create a length-(k − 1) increasing subsequence with a smaller last value.

It turns out that this stack-growing process admits a very simple recursive computation, though
this is not obvious. We claim that in step j, all that happens is we place L[j] on top of stack k+ 1,
where k is the index satisfying S[k] ≤ L[j] < S[k + 1]. If L[j] < S[1], we place it on the first stack,
and if it satisfies L[j] ≥ S[K], we increment K and create a new stack with S[K + 1] = L[j] at
the top. We can implement this stack-growing step in O(log(n)) time by binary searching for the
index k with S[k] ≤ L[j] < S[k + 1], since we argued earlier that S is always sorted. Therefore,
if we prove this stack-growing process correctly preserves the definition of S, we can solve longest
increasing subsequence in O(n log(n)) time, by outputting the final value of K.

We now prove correctness. Consider what could change in step j: i.e., after allowing L[j] to be
included, which k could possibly have subsequences of that length with smaller last entries? One
simple observation is that any subsequence of L[: j] that includes L[j] ends with L[j], so the only
thing that can happen is that L[j] becomes the new head of some stacks. Our claim is essentially
that this uniquely happens to the (k + 1)th stack, where S[k] ≤ L[j] < S[k + 1].

7

We can prove this in three cases. First, for any earlier stack i ≤ k, we cannot replace its head
with L[j], since L[j] ≥ S[k] ≥ S[i], i.e., L[j] is not smaller than the previous head S[i]. Second,
for any later stack i > k + 1, it cannot be the case that there is a length-i subsequence of L[: j]
ends on L[j]. This would imply there is a length-(i − 1) subsequence of L[: j − 1] with smaller
last term than L[j], but S[i− 1] ≥ S[k + 1] > L[j]. Finally, we can create a smaller last term in a
length-(k+ 1) subsequence by taking the length-k subsequence ending in S[k], and appending L[j]
at the end. Thus, we should replace the head of S[k + 1] only, and this completes the proof.

3.3 Subset sum
In this final subsection on sets, we introduce a family of related problems. The simplest variant
in this family is the subset sum problem. In this problem, we are given as input L, an Array of n
natural numbers, and a target value V ∈ N. The goal is to determine whether or not there is a
subset T ⊆ [n] whose corresponding entries in L sum to V , i.e., has

V =
∑
i∈T

L[i].

Again, there is a straightforward exponential-time solution that computes the sum of each of the
2n subsets of L. Our goal is to improve this result substantially via DP.

In Sections 3.1 and 3.2, we overcame the potentially exponential hardness of two subset selection
problems by defining subproblems with a natural ordering. For example, in scheduling, we first
induced an ordering by sorting the right endpoints. We then defined our subproblems on prefixes.
In the longest increasing subsequence problem, we again let subproblems correspond to prefixes.

For subset sum, such a straightforward approach fails. For example, we could try letting S[j]
compute the value of subset sum for the prefix L[: j]. The trouble is that earlier subproblems
appear to yield little information for later subproblems. Indeed, if all earlier prefixes were unable
to produce a subset summing to V , that says essentially nothing about the current prefix.

However, it turns out that there is still a way of using DP to attack subset sum, if we extend our
subproblems along another dimension: the value of a subset T ⊆ [n], i.e., the actual sum

∑
i∈T L[i].

This is intuitive, because to understand whether a target sum v is achievable after committing to
including some entry L[j], we can reduce to a subproblem with target sum v − L[j]. Therefore, it
seems natural to index subproblems on the value of a subset sum.

We can now explain our DP solution. We define nV different subproblems S[j][v], indexed by
j ∈ [n] and v ∈ [V]. Thus, there are two axes, thought of as a “prefix index” j and a “target value”
v. We let S[j][v] store either True (if there is a subset of the prefix L[: j] summing to v) or False
(if no such subset of L[: j] exists). Note that S[n][V] contains the answer to subset sum.

We claim that
S[j][v] = S[j − 1][v − L[j]] or S[j − 1][v]. (5)

Here, we let S[j − 1][v − L[j]] = False by default if v − L[j] is not a valid target, i.e., if L[j] > v,
and we let S[j][0] = True for all j ∈ [n], since we can always hit a target of 0 by taking nothing.

Let us unpack the formula (5). By our subproblem definitions, the left-hand side asks to compute
whether it is possible for a subset of L[: j] to sum to v. Suppose there were such a subset of L[: j].
There are two cases: either the subset contains the last entry L[j], or it does not.

If it contains L[j], then the other entries in the subset must sum to v − L[j]. These other entries
all belong to the prefix L[: j − 1]. Therefore, in this case, S[j − 1][v − L[j]] = True.

In the other case, L[j] is not included in the subset, so the entire subset belongs to the prefix
L[: j − 1] and sums to v. Therefore, in this case, S[j − 1][v] = True.

We have enumerated the only two possibilities for how S[j][v] can be True and the reader can
verify that the formula (5) indeed implements this recursion. To finish our DP solution, we also
need to specify an order to solve the subproblems (5) in, and analyze its runtime. Luckily, the
formula (5) suggests a natural order: proceed one index j at a time.

It is helpful to visualize our subproblems as being memoized in a two-dimensional array, where the
horizontal axis is the value v ∈ [V] and the vertical axis is the index j ∈ [n]. Computation of the

8

jth row using (5) only requires having memoized the values of the (j − 1)th row. Thus, we can
proceed row by row, filling in each row from left to right, as described in Algorithm 6.

Algorithm 6: SubsetSum(L, V)

1 Input: L, an Array instance containing n := |L| numbers in N, target value V ∈ N
2 S ← two-dimensional Array with dimensions n× V

// Implementable using an Array of size nV , by dividing it into n subarrays of length V , the rows of S.
3 for v ∈ [V] do
4 if v == L[1] then
5 S[1][v]← True
6 end
7 else
8 S[1][v]← False
9 end

10 end
11 for 2 ≤ j ≤ n do
12 for v ∈ [V] do
13 if L[j] < v then
14 S[j][v]← S[j − 1][v − L[j]] or S[j − 1][v]
15 end
16 else if L[j] = v then
17 S[j][v]← True
18 end
19 else
20 S[j][v]← S[j − 1][v]
21 end
22 end
23 end
24 return S[n][V]

Lines 3 to 10 of Algorithm 6 implement the base case of our DP, i.e., filling out the first row of S.
The only possible target value v attainable using subsets of L[: 1] is v = L[1], since this is the only
entry of the prefix. Thus, we set S[1][L[1]] ← True if L[1] ∈ [V], and we set all other entries of
the first row in S to False. Finally, Lines 11 to 23 fill out the rest of S one row at a time. Each
row only relies on the previous row, which has been memoized. It is clear that Algorithm 6 uses
O(1) time to compute each of the nV entries in S, so the overall runtime is O(nV).

This is good if the target V is moderately small, e.g., if V ≈ n then the runtime of Algorithm 6
is ≈ n2. However, this algorithm is not well-suited to subset sum instances with large V . This
is for good reason: our difficulty grappling with V � n is believed to be inherent to all efficient
algorithms. We will revisit this point in our complexity theory unit, in Part VIII of the notes.

0-1 knapsack. There are many variants of subset sum, admitting corresponding variants of the
solution template in Algorithm 6. Most only involve small modifications to the basic solution.

One of the most famous variants is the 0-1 knapsack problem. In this problem, we are given as
input W , an Array of n natural numbers, and V , an Array of n positive real numbers. These arrays
encode the weights and values of n items. We are also given a weight budget B ∈ N. The goal is
to return the maximum possible total value

∑
i∈T V [i] of a subset T ⊆ [n] of items, subject to the

total weight
∑

i∈T W [i] staying within the budget B. That is, we want to determine

max
T⊆[n]∑

i∈T W [i]≤B

∑
i∈T

V [i]. (6)

Intuitively, the 0-1 knapsack problem models budget optimization problems, where taking items
incurs a cost against a budget limit B. Perhaps the least natural part of the problem definition is
the requirement that the budget B and all the weights W [i] are integers. Again, this is believed
to be inherent to efficient algorithms for 0-1 knapsack, to be discussed later in Part VIII.

9

There are three main differences between 0-1 knapsack and subset sum. First, rather than seeking a
subset whose total weight exactly equals a value, 0-1 knapsack considers subsets whose total weight
is at most a value. Second, in addition to having a weight W [i], every item in 0-1 knapsack also
has a value V [i]. Finally, rather than merely seeking existence of such a subset (i.e., a True-False
question), 0-1 knapsack asks for the value of the optimal subset.

Nonetheless, we will be able to solve 0-1 knapsack in O(nB) time using a slight modification of our
DP strategy for subset sum. We define nB different subproblems S[j][b], indexed by j ∈ [n] and
b ∈ [B]. We let S[j][b] store the maximum possible value of a subset of L[: j], subject to staying
within a weight budget of b. That is, our goal is to compute all

S[j][b] := max
T⊆[j]∑

i∈T W [i]≤b

∑
i∈T

V [i].

Comparing to (6), we see that S[n][B] solves our original problem. Further, very similarly to (5),

S[j][b] = max (S[j − 1][b−W [j]] + V [j], S[j − 1][b]) ,

where again we only include the first term if W [j] ≤ b, and we treat S[j][0] = 0 for all j ∈ [n].
This is because a subset of L[: j] either takes the jth item or it does not. If we take the jth item,
we have a new budget constraint of b −W [j], but we have gained V [j] in value. Otherwise, we
keep our budget constraint of b but are restricted to the first j − 1 items. Finally, we can solve
these subproblems by iterating over j ∈ [n] one row at a time and applying the above formula, as
in Algorithm 6. This takes O(1) time per subproblem via memoization, or O(nB) time total.

Unbounded knapsack. The unbounded knapsack problem is a variant of 0-1 knapsack where we
can take items multiple times. In other words, rather than restricting ourselves to subsets T ⊆ [n]
(which contain either 0 or 1 copies of each item), we modify (6) to read

max
c∈Zn

≥0∑
i∈[n] ciW [i]≤B

∑
i∈[n]

ciV [i].

To explain this expression, c ∈ Zn
≥0 represents the counts of each item, i.e., we take ci copies of

item i, for some nonnegative integer ci. We still wish to stay within the budget constraint, so∑
i∈[n] ciW [i] ≤ B, and we are rewarded based on the total value of taken items,

∑
i∈[n] ciV [i].

We refer to the sets of items we are allowed to take (i.e., with counts c) as multisets.

It no longer makes sense to define subproblems based on prefixes (i.e., indexing subproblems by
j ∈ [n]), because the unbounded knapsack problem lacks the recursive structure of subset selection
problems: once we take item j, we could still take it again. However, there is a simple fix: we
index our DP subproblems on the budget constraint b ∈ [B] only. Namely, for all b ∈ [B], let

S[b] := max
c∈Zn

≥0∑
i∈[n] ciW [i]≤b

∑
i∈[n]

ciV [i].

The observation driving the recurrence for unbounded knapsack subproblems is: a multiset either
contains no elements, or it contains at least one copy of item i ∈ [n], for some i with W [i] ≤ b.
Therefore, defining S[0] = 0,

S[b] = max

0, max
i∈[n]

W [i]≤b

S[b−W [i]] + V [i]

 .

By solving the subproblems S[b] for b ∈ [B] in incremental order, each computation of S[b] takes
O(n) time using the above formula via memoization. Thus, the total runtime is again O(nB).

4 Strings
In this section, we give DP-based solutions to two common problems on strings. Strings are
arrays of n characters from a universe Ω. For example, the universe Ω could be the English

10

alphabet {‘a’, ‘b’, ‘c’, . . . , ‘z’}, or the set of characters commonly found on computer keyboards.
Unlike the problems in Section 2, which focused on lists of real numbers, string problems deal with
potentially arbitrary sets of characters. Nonetheless, several techniques we have developed so far
(in combination with new tricks) will prove to be very useful in attacking string problems.

Throughout the rest of this section, we fix an arbitrary universe Ω, and a length-n string S is an
Array of n entries from Ω. We refer to the ith entry of S as S[i] for all i ∈ [n]. A subsequence
of a string S is any string T that can be formed by deleting entries from S, and concatenating
the remaining entries preserving the order. A substring of a string S is any subsequence T whose
characters originally appeared in consecutive order in S. For example, if S = {1, 2, 3, 4, 5}, then
T = {1, 3, 5} is a subsequence of S, T = {1, 2, 3} is a substring of S, and T = {1, 4, 3} is neither.

4.1 Longest common subsequence
One of the most fundamental problems on strings is the longest common subsequence (LCS) prob-
lem. In this problem, we are given as input two strings X and Y , with lengths m and n respectively.
The goal is to determine the length of the LCS of X and Y . That is, we want to find the longest
a string Z could possibly be, where Z is a subsequence of both X and Y .

This problem has various applications. For example, in biology, X and Y could be two DNA
sequences, and we are interested in finding long common subsequences as evidence of proximity of
X and Y in the evolution tree. More generally, any time a problem involves strings, the length of
the LCS is a reasonable metric (i.e., notion of similarity) for comparing pairs of strings.

Once again, the naïve solution to LCS (enumerate all pairs of substrings and compare them) runs
in exponential time. A natural choice of “special subproblems” for LCS is the set of LCS solutions
on pairs of a prefix of X and a prefix of Y . Let us define S[i][j] to be the length of the LCS of
X[: i] and Y [: j], i.e., the first i characters in X and first j in Y , for all i ∈ [m], j ∈ [n]. We claim

S[i][j] = max
(
S[i][j − 1], S[i− 1][j], S[i− 1][j − 1] + IX[i]=Y [j]

)
(7)

where S[i][j] := 0 if i = 0 or j = 0. Here, IE is the 0-1 indicator corresponding to an event E , so

IX[i]=Y [j] =

{
1 X[i] = Y [j]

0 X[i] 6= Y [j]
.

In other words, the option S[i− 1][j − 1] + 1 is only included in (7) if X[i] = Y [j]. Otherwise, we
can limit (7) to the first two options, as any substring of X[: i− 1] and Y [: j − 1] is a substring of
X[: i] and Y [: j−1], so S[i−1][j−1] ≤ S[i][j−1] and thus the third option in (7) can be excluded.

Let us now prove the formula (7) is correct. Suppose first that X[i] 6= Y [j]. Then, at least one
of X[i] or Y [j] does not belong to the LCS of X[: i] and Y [: j], since they would both be the
last element in the subsequence, but they are unequal. Thus, the LCS is also the LCS of the pair
(X[: i− 1], Y [: j]), if we do not include X[i], or the LCS of (X[: i], Y [: j − 1]), if we do not include
Y [j]. This implies S[i][j] = max(S[i][j − 1], S[i− 1][j]) as claimed in (7).

Otherwise, suppose that X[i] = Y [j]. There is now a third possibility: the LCS includes both X[i]
and Y [j]. In this case, the LCS is just the LCS of X[: i − 1] and Y [: j − 1], with X[i] = Y [j]
appended to the end. This gives the third option in (7) as claimed.

Finally, we need to specify an order in which to evaluate the DP subproblem values (7). We will have
an outer for loop that increments through i ∈ [m], and an inner for loop that increments through
j ∈ [n], solving S[i][j] iteratively. When i = 1 or j = 1, the formula (7) can directly be evaluated
in O(1) time under our convention handling i = 0 or j = 0. Otherwise, it is straightforward to
check that all of the subproblem solutions with index pairs (i, j − 1), (i − 1, j), and (i − 1, j − 1)
have been memoized by the time we reach S[i][j]. Thus, evaluating (7) takes O(1) time per index
pair (i, j) with i ∈ [m], j ∈ [n], and the algorithm overall takes O(mn) time.

Multiple strings. It is possible to generalize the LCS problem to more than two strings. For
example, to determine the LCS of three strings W,X, Y , with lengths `,m, n respectively, we can
simply define subproblems S[i][j][k] to be the length of the LCS of W [: i], X[: j], and Y [: k] for all
triplets i ∈ [`], j ∈ [m], k ∈ [n]. These subproblems satisfy the recursion

S[i][j][k] = max
(
S[i][j][k − 1], S[i][j − 1][k], S[i− 1][j][k], S[i− 1][k − 1][j − 1] + IW [i]=X[j]=Y [k]

)
,

11

whose validity is proven analogously to (7). This formula can be evaluated in O(1) time if we
memoize subproblems in three nested for loops over i ∈ [`], j ∈ [m], and k ∈ [n], so the overall
algorithm takes O(`mn) time. The generalization to even more strings is straightforward.

Edit distance. The LCS is a close variant of computing arguably the most popular metric
on strings: the edit distance. The edit distance between strings X and Y has a very intuitive
definition: it is the fewest number of operations needed to transform X into Y , where the set
of allowable operations is: delete a character, insert a character, or substitute a character for
any other. For example, the edit distance between “kitten” and “sitting” is 3, witnessed by the
substitutions ‘k’← ‘s’, ‘e’← ’i’, and the insertion of a ‘g’ at the end of the string.

It turns out that if we are limited to only deletions and insertions, the way to transform X to Y
via the fewest operations has a very simple description. Let Z be the LCS of X and Y . First,
transform X into Z via deletions. Second, transform Z into Y via insertions.

To see that this is optimal, note that any deleted character either came from X or was a new
insertion, and inserting a character only to delete it later creates a suboptimal sequence of oper-
ations. Thus, we may assume all deletions came from X. We can then rearrange the operations
so all deletions come first without loss of generality, which does not affect the outcome. We have
now reduced to the case where our operations first delete characters from X to form Z and then
add characters to form Y , so Z must be a substring of both. This sequence of operations is clearly
shortest if Z is as long as possible, i.e., the LCS of X and Y , as claimed. Thus, knowledge of the
LCS lets us compute the edit distance, in this variant that does not allow substitutions.

Fortunately, the edit distance is not much harder to compute than the LCS. Let X and Y have
lengths m and n respectively, and for all i ∈ [m], j ∈ [n], let S[i][j] be the edit distance between
X[: i] and Y [: j]. We claim that

S[i][j] = min
(
S[i][j − 1] + 1, S[i− 1][j] + 1, S[i− 1][j − 1] + IX[i]6=Y [j]

)
, (8)

where the base cases are S[0][j] = j for all j ∈ [n] (the best strategy is to perform j insertions),
and S[i][0] = i for all i ∈ [m] (the best strategy is to perform i deletions). Repeatedly evaluating
(8) via memoization over two nested for loops yields an O(mn) time algorithm for edit distance.

We now explain why the recursive formula (8) is true. We claim that without loss of generality,
all operations are one of the following: delete a character from X, insert a character of Y , or
substitute a character of Y for a character of X. All other deletions are due to an earlier insertion,
i.e., operations are wasted; similarly, all other insertions and substitutions are wasteful.

Now, suppose X[i] 6= Y [j], and consider what must happen to X[i] and Y [j]. Because they are
unequal, a small extension of our earlier claim shows we must either delete X[i], insert Y [j],
or substitute Y [j] for X[i]. Indeed, all other strategies (such as substituting Y [j] for an earlier
character, only to later have to remove X[i]) can be shown to be wasteful. These three cases are
captured by (8), as claimed. In the case when X[i] = Y [j], we have an extra option of not touching
either entry as their presence does not affect the rest of the algorithm, i.e., S[i][j] = S[i− 1][j− 1].

4.2 Longest palindromic substring
The longest palindromic substring problem is a classical algorithms problem on strings, and allows
us to highlight a particularly creative DP solution due to Manacher [Man75]. Say that a string P
is a palindrome if it is the same if the order of all characters is reversed, e.g., “dad” is a palindrome
but “dab” is not. In the longest palindromic substring problem, we are given as input a string X
of length n, and the goal is to determine the longest possible length of Y , a palindromic substring
of X. For example, the longest palindromic substring of X = “banana” is Y = “anana”.

We first introduce some helpful simplifications. We will assume without loss of generality that we
are looking for the longest odd-length palindromic substring. It turns out that there is a clean
reduction to this case which also handles even-length palindromes, which we will go over at the
end of this subsection. Therefore, every palindrome P := X[` : r] of interest has a starting index
`, an ending index r, and a center index c satisfying c = `+r

2 . For any index i ∈ [`, r], we also have
a mirrored index mirrc(i) := 2c − i, so that mirrc(c) = c and mirrc(`) = r. Then, the condition
that X[` : r] is a palindrome can be concisely summarized as X[i] = X[mirrc(i)] for all i ∈ [`, r].

12

There is a very natural, straightforward, O(n2) algorithm for the longest odd-length palindromic
substring problem. Let S[j] be the longest possible odd length of a palindromic substring with
center index j, for all j ∈ [n]. For example, S[j] ≥ 1 for all j ∈ [n], because each individual character
X[j] is an odd-length palindromic substring with center index j. We claim we can compute S[j]
in O(n) time for all j ∈ [n]. The strategy is to maintain a pointer r to the ending index of a
current palindrome P , initialized to r ← j and P ← X[j]. We will repeatedly increment r by one,
checking whether P [r] = P [mirrj(r)] for the new value of r. If it is, we can grow the palindrome by
one character. We continue doing this until we cannot, and the result is the longest palindromic
substring centered at X[j]. This algorithm takes O(1) time to perform all the steps each time we
increment the pointer r, so O(n) time total, to compute S[j]. Running this computation for all
j ∈ [n] takes O(n2) time as claimed. Note that this solution did not really use any memoization.

Perhaps the most natural first attempt to use DP is to define a subproblem S[i][j] for each index
pair 1 ≤ i ≤ j ≤ n, such that L[i : j] is odd-length, and

S[i][j] =

{
True X[i : j] is a palindrome
False X[i : j] is not a palindrome

.

Then it is simple to check that S[i][j] satisfies the following recursive definition:

S[i][j] = S[i + 1][j − 1] and X[i] == X[j],

where we handle the base cases of S[j][j] = True for all j ∈ [n]. In fact, we can compute
all S[i][j] in O(1) time, by proceeding in the same order in which we would compute them in the
straightforward algorithm, i.e., picking each center and growing the palindrome out. Unfortunately,
there are Θ(n2) subproblems, and this results in another O(n2) time algorithm.

Manacher’s algorithm. We present an elegant solution by [Man75] that runs in linear time. In
Manacher’s algorithm, as in the straightforward algorithm, we again define S[j] to be the longest
possible odd length of a palindromic substring with center index j. Our goal is to compute all of
the S[j] in O(n) time. Some of the S[j] will take us longer than others to compute, but overall,
they take O(n) time combined. The entire algorithm is based on the following observation.

Lemma 1. Let Pc = X[` : r] be an odd-length palindrome with center index c = `+r
2 . Let j ∈

[c, r−1] be an index in the right half of Pc, and let mirrc(j) := 2c−j be its mirrored index in the left
half. Finally, let Pmirr be the longest odd-length palindromic substring with center index mirrc(j),
and suppose Pmirr has starting index > ` (so it is a substring of P). Then, S[j] = S[mirrc(j)].

Let us unpack Lemma 1. It applies in the following situation: we have already found a (hopefully
long) palindromic substring Pc, centered at c, and are currently exploring its right half at index j.
Suppose we have already memoized the special subproblems, i.e., S[i], defined earlier, for all the
previous indexes i ∈ [j − 1]. Then, the claim is that if Pmirr, the longest palindrome centered at
mirrc(j), is fairly short, i.e., it fits within P , then we can compute S[j] in O(1) time: it is the same
as S[mirrc(j)]. This fast computation will be the heart of our savings. We now prove this lemma.

Proof of Lemma 1. We first prove S[j] ≥ S[mirrc(j)]. By our definition of S[j], this is saying there
is some odd-length palindromic substring centered at X[j] with length ≥ S[mirrc(j)]. We construct
this palindromic substring as follows. Let Pmirr be as defined in the lemma statement, which is a
substring of P by assumption. Reflect every character of Pmirr over the center index c. This results
in Pj , some substring centered at j. In fact, Pj is a palindromic substring, since all the characters
are the same as in Pmirr, because all of the reflection happens within the larger palindrome P .
Thus, Pj is a length-S[mirrc(j)] palindromic substring centered at j as claimed.

Next, we prove S[j] = S[mirrc(j)]. Suppose otherwise for the sake of contradiction, i.e., S[j] >
S[mirrc(j)]. This means that Pj , the length-S[mirrc(j)] substring constructed in the first half of
the proof, can be extended to a longer palindrome of length S[j] centered at j. However, this also
implies that Pmirr can be extended by at least one character on both sides to another palindrome.
This is since we assumed Pmirr had a starting index > `, so this extension happens within P . This
contradicts the definition of Pmirr as the longest palindrome centered at mirrc(j).

We can now state Manacher’s algorithm in Algorithm 7. The key trick to speed up its implementa-
tion is that the algorithm always maintains a current palindromic substring Pc = X[` : r], centered

13

at an index c = `+r
2 . We maintain two invariants about Pc. The first is that Pc is the longest

palindromic substring centered at c, so its length is S[c]. Note that given the length of Pc, we can
compute its endpoints as c − S[c]−1

2 and c + S[c]−1
2 . The second is that r is the rightmost ending

index of any palindrome the algorithm has found. We use this current palindromic substring Pc

to speed up subproblem computations for as long as we can, via Lemma 1.

Algorithm 7: LongestPalindromicSubstring(X)

1 Input: X, an Array instance containing n := |X| characters in Ω
2 S ← Array.Init(n)
3 (S[1], `, c, r)← (1, 1, 1, 1)

// Initialize maintained palindrome Pc ← X[1 : 1], the longest palindrome centered at c = 1.
4 for 2 ≤ j ≤ n do
5 if j < r and mirrc(j)− S[mirrc(j)]−1

2 > ` then
6 S[j]← S[mirrc(j)]
7 end
8 else
9 (S[j], `, c, r)← (1 + 2 max(0, r − j), j −max(0, r − j), j, j + max(0, r − j))

// We update Pc ← X[j −max(0, r − j) : j +max(0, r − j) = max(j, r)] where c← j.
10 while r + 1 ≤ n and X[`− 1] == X[r + 1] do
11 (S[j], `, r)← (S[j] + 2, `− 1, r + 1)

12 end
13 end
14 end
15 return maxj∈[n] S[j]

We now explain Algorithm 7’s components and analyze its correctness. It proceeds in n iterations,
always maintaining the two required invariants about Pc at the end of every iteration. To see
why, suppose the invariants hold at the start of iteration j. There are two cases, one handled by
Lines 5 to 7, and one handled by Lines 8 to 13. In the first case, Lemma 1 applies, so we know
that S[j] ← S[mirrc(j)]. This also means that the ending index of Pj , the length S[j] substring
centered at j, is j + S[j]−1

2 < r, since it is the mirror index of mirrc(j)− S[j]−1
2 > `. Thus, Pj does

not achieve the rightmost ending index of any palindrome, so we do not update r or Pc.

In the second case, we know for sure that we should update Pc. This is because Line 5 failed,
which could mean one of two things. Either the longest palindrome centered at mirrc(j) extends
beyond the current Pc, so there is a palindrome centered at j whose ending index is at least r, or j
itself is already larger than r. In either case, we initialize a current palindrome centered at j and
ending at max(j, r) in Line 9. We then repeatedly grow it until we cannot anymore in Lines 10
to 12. This preserves the invariant that the new Pc has the rightmost ending index.

The correctness proof follows by combining the two cases presented above. We now discuss the
runtime of Algorithm 7. The total time complexity of Lines 5 to 7 is O(n), since they run at most
n times each requiring constant time. Similarly, Line 9 requires at most O(n) times total.

This leaves bounding the runtime of Lines 10 to 12. It is perhaps least clear that these lines
also require only O(n) time total. In some iterations, we could require substantially growing
the length of the current palindrome, e.g., if we are in an iteration where the longest discovered
palindromic substring changes. However, notice that every time Lines 10 to 12 run, r increments
by 1. Moreover, r never decreases throughout the entire algorithm; indeed, the only other line
where it could change is Line 9, where it is set to r ← max(j, r). Thus, Lines 10 to 12 run at most
n times total, because r ≤ n throughout the algorithm. This completes the runtime analysis.

Manacher’s algorithm is a clever application of pointer tricks. It highlights a powerful tool: using
the movement of pointers to bound runtimes of algorithms. We showed that the complexity of all
parts of Algorithm 7 was constant time per iteration, other than a loop that involved incrementing
the pointer r each time. Since r can only increment n times, we achieved our claimed bound.

Even-length palindromes. To generalize to even-length palindromes, it suffices to first insert a
specially chosen character, say ‘#’ for the sake of this discussion, between every pair of characters

14

in the initial string X (as well as the start and end), and then run Algorithm 7 on the modified
string X ′. For example, if X = “banaana”, then X ′ = “#b#a#n#a#a#n#a#”. The claim is that
the longest odd-length palindromic substring of X ′ (e.g., “#a#n#a#a#n#a#”) yields the longest
overall palindromic substring of X (e.g., “anaana”), allowing for odd or even length, after removing
all the inserted ‘#’ characters. This is true because both parities of palindromes P in X yield
corresponding odd-length palindromes in X ′, centered either at the original center of (odd-length)
P or the ‘#’ character in between the two middle characters of (even-length) P . Thus, solving
longest odd palindromic substring on X ′ suffices to solve longest palindromic substring on X.

5 Graphs
In this final section of these notes, we cover graph-based applications of dynamic programming.
We follow notation and conventions from Section 4, Part I.

5.1 Game theory
Consider a two-player game with a winner and a loser. We can model the set of states the gameplay
can be in as a directed graph, where each game state is a vertex of the graph. For example, if the
game is tic-tac-toe (where the ‘X’ player goes first), each game state corresponds to a possible state
of the board in the middle of gameplay. In particular, a vertex in the tic-tac-toe graph corresponds
to a game state where there are i copies of ‘X’ and j copies of ‘O’ placed in the nine grid cells,
such that i + j ≤ 9, i = j or i = j + 1, and there is at most one three-in-a-row that has occurred.
These are the only possible game states because the ‘X’ player has either played the same number
of moves as the ‘O’ player (so it is the ‘X’ player’s turn), or one more (so it is the ‘O’ player’s
turn). Moreover, the game ends once a single three-in-a-row is achieved.

We now explain the graph representation of the two-player game in more detail. Each game state
s has a directed edge pointing to all possible game states t that can appear, after a single move
from s. For example, the starting game state of tic-tac-toe, i.e., an empty board, has nine outgoing
edges. Each outgoing edge points to a game state with a single ‘X’ somewhere on the board.

In the remainder of this section, we call the first player Alice and the second player Bob. We call a
game state terminal if no further moves can be taken (i.e., the game has ended, and the state has
no outgoing edges). For simplicity, in the following discussion suppose that we are playing a game
with no ties, so every terminal state either ends in Alice or Bob winning. Our goal is to determine
whether Alice has a winning strategy. That is, is it true that for any moves that Bob responds
with, Alice can always respond with a move that ensures she wins the game eventually?

It turns out that there is a natural dynamic programming-based way to answer this question for
many common games. Consider for example a situation where the tic-tac-toe game state looks like

X X
O

O X
(9)

and it is Bob’s turn to play. We claim this is a losing position for Bob. It is intuitive why this
is the case: whatever Bob does, Alice can respond with the top-center square or the center-right
square. For example, if Bob takes the top-center square, the resulting game state is:

X O X
O

O X
(10)

which is a forced win for Alice, as now she can take the center-right square. Thus, in the strange
variant of tic-tac-toe where we initialize the game state to (9) and ask Bob to play next, Alice
has a winning strategy. We arrived at this conclusion by reverse-engineering from terminal states:
(10) is winning for Alice since there is an edge she can take to a winning terminal state, and (9)
is winning for Alice because no matter what Bob does, Alice can move to a winning state.

We can generalize this intuition to determine whether the starting position is winning. Our goal
is to recursively label each vertex v, corresponding to a game state in the game graph, as either

15

True or False, stored in a DP subproblem solution table S. At the end of the algorithm, a vertex
v will have S[v] = True if there is a gameplay strategy for Alice that ensures she wins no matter
what Bob does, from the game state at v, and will have S[v] = False otherwise. By solving the
subproblem at the starting vertex, we determine whether Alice has an overall winning strategy.

The way to recursively solve a subproblem is to use the following formula:

S[v]←

Alice plays next and
∨

(v,u) is an edge

S[u]


or

Bob plays next and
∧

(v,u) is an edge

S[u]

 ,

(11)

where any terminal state in the graph is first labeled as True or False depending on who has won,
and the

∧
and

∨
symbols denote taking the and or or over a set of Booleans.

Let us unpack (11). If S[v] is not a terminal state, that means either Alice or Bob plays next, so
only one of the two cases in (11) can evaluate to True. In the first case, Alice is up to play, and
she has a winning strategy if there is some edge she can take (corresponding to a move) leading
to another winning state for her. This is expressible as an or over all of the subproblems S[u] she
can move to. For example, (10) is a winning state because Alice can move to a winning terminal
state. In the second case, Bob is up to play, which means that Alice can only guarantee a win if
all of Bob’s moves lead to winning states for Alice. This is similarly expressible as an and.

We next move to a subtle issue: in what order do we recursively evaluate (11)? It turns out that
there exists an order that works iff the game graph is a directed acyclic graph (DAG), which we
define and study in Section 5.2. To get a sense of what could go wrong, suppose that there is a
directed cycle among the game states (a, b, c), where edges (a, b), (b, c), and (c, a) all exist. To use
(11) to compute S[a], we need to know the value of S[b], but S[c] is needed for S[b] and S[a] is
needed for S[c]. This leads us to a cycle where we are unable to compute the truth value of any of
these game states successfully. This situation is essentially the logical fallacy of circular reasoning
in algorithmic form, just as a successful recursive algorithm is an example of strong induction.

For games like tic-tac-toe, where there is an obvious measure of progress (e.g., the number of
symbols on the board), we can show that no cycles can exist in the game graph, so it is a DAG.
To see why, notice that every time an edge is taken (i.e., a move is made), the number of symbols
grows. Thus, the existence of a cycle would yield a contradiction, since we cannot keep adding
symbols and eventually result in the same number of symbols that we started with. However,
for games like chess where pieces can move back to where they came from, undoing any progress
measure, cycles can easily occur. This motivates the inclusion of rules preventing repetitions;
indeed, chess tournaments are played with such a “no threefold repetition” rule.

Another complication is the size of the game graph: any algorithm that fills out the DP table
must at least visit all of the vertices to compute their subproblem values, so if the number of
vertices is large, this can be very cumbersome. For example, the number of game states in chess is
� 1040, making the game graph infeasible to explore in full. In practice, heuristics are often used
to simplify the formula (11), such as proceeding top-down and only evaluating (11) recursively to
a certain depth rather than all the way to the terminal states.

Ties. The formula (11) straightforwardly generalizes if terminal game states can result in a tie.
The only difference is that at the beginning, any tied terminal state is labeled as False (in addition
to any terminal state where Bob wins). This is due to the observation that Bob can prevent an
Alice win as long as he can move to either a tied terminal state, or a terminal state where he wins.

Zero-sum games. This DP-based solution further extends to a family of two-player games called
zero-sum games, which generalize those in which there is always a winner and a loser. In zero-sum
games, Alice and Bob each have a score at the end of the game, such that the sum of their scores
in any terminal state is zero. For example, win-loss games are zero-sum by setting the score of the
winner to 1, and the score of the loser to −1. More generally, suppose a game involves subdividing
a set of objects via taking them in turn, such that each object has a value, and each player’s score
is the total value they have taken. We can convert this into a zero-sum game by observing that

16

the sum of the two scores at the end of the game is always the total value, say T . We can then
define a new game where Bob starts with a value of −T , so that if Alice ends with k total points,
Bob ends with −T + (T − k) = −k points. This new game is thus zero-sum.

The reason why zero-sum games are important is that we can succinctly express Alice and Bob’s
goals: Alice is trying to maximize her score, and Bob is trying to minimize Alice’s score. This is
because in a zero-sum game, the smaller Alice’s score is, the higher Bob’s score is, so minimizing
Alice’s score is aligned with Bob’s goal. In these situations, we can generalize the formula (11) to

S[v] =

{
max(v,u) is an edge S[u] + Alice’s score change from taking edge (v, u) Alice plays next
min(v,u) is an edge S[u] + Alice’s score change from taking edge (v, u) Bob plays next

,

where S[v] denotes the maximum value Alice can guarantee starting at game state v, and we fill
in terminal states first with a score of 0. This way, once we have solved all DP subproblems, the
initial game state subproblem solution contains the final score after taking the optimal path to a
terminal node. The formula above can compute the optimal strategy for Alice in exactly the same
settings as (11) can for win-loss games, i.e., whenever the game graph is acyclic.

5.2 Directed acyclic graphs
A directed graph G = (V,E,w) with vertices V , edges E ⊆ V × V , and edge weights w ∈ RE

≥0 is
said to be a directed acyclic graph (DAG) if it contains no directed cycles. That is, there should
be no set of distinct vertices {v1, v2, . . . , vi} ⊆ V in the graph, such that all of the directed edges
(v1, v2), (v2, v3), . . . , (vi−1, vi), (vi, v1) belong to the edge set E (which would cause a cycle).

The most important property of DAGs is that their vertices can be relabeled with the numbers in
[n] where n := |V |, such that there are no “backwards edges.” That is, after this relabeling of the
vertices, all edges are of the form (i, j) where i < j. Such a vertex ordering is called a topological
ordering.3 It turns out that a directed graph’s vertices admit a topological ordering iff it is a DAG.
We will later prove the harder direction, i.e., that all DAGs admit a topological ordering on their
vertices, in Part V of the lecture notes. In fact, such an ordering can be computed in O(|V |+ |E|)
time. Here, we give a short proof of the simpler direction, stated as follows.

Lemma 2. Let G = (V,E,w) be a directed graph, with vertices V identified with the set [n] in a
topological ordering, i.e., all edges in E are of the form (i, j) for i < j. Then G is a DAG.

Proof. Suppose for the sake of contradiction thatG is not a DAG, so there are vertices {i1, i2, . . . , ik}
forming a cycle, i.e., such that (i1, i2), (i2, i3), . . . , (ik−1, ik), (ik, i1) ∈ E. Because V is in a topo-
logical ordering, the existence of the first k − 1 edges in the cycle implies i1 < i2 < i3 < . . . < ik.
Therefore, i1 < ik. However, existence of the last edge implies ik < i1, a contradiction.

Note that the proof technique in Lemma 2 is very similar to our argument in Section 5.1 about why
the tic-tac-toe game graph is acyclic. In particular, any sequence of edges taken in the tic-tac-toe
game graph grows the number of symbols on the game board by one each, so it cannot return to
the same starting point. Similarly, in Lemma 2 we used the indices i1, i2, . . . , ik as our measure of
progress, as the index always grows after taking an edge in a topological ordering.

We hinted in the previous section that the presence of directed cycles can cause significant issues
for DP-based solutions. We now formalize this statement. Consider an arbitrary DP algorithm,
involving a set of subproblems S[v]. We can associate a dependency graph with the DP algorithm,
where there is a directed (unweighted) edge (u, v) for every pair of subproblems u, v, where the
recursive formula for S[v] depends on S[u]. For example, in FibBasic (Algorithm 2), the subprob-
lems S[i] correspond to computing the ith Fibonacci number Fi for each i ∈ [n]. There are ≤ 2n
edges in the FibBasic dependency graph, as each vertex i ∈ [n− 2] has two outgoing edges (i, i+ 1)
and (i, i + 2), and we also have an edge (n − 1, n). This is because other than boundary issues,
each S[i] is used in the computation of S[i + 2] = S[i + 1] + S[i], as well as in the computation
of S[i + 1] = S[i] + S[i − 1]. As another example, the dependency graph for playing two-player

3This definition appears to have nothing to do with topology from mathematics, but is instead related to the
concept of a “network topology,” which is jargon from the study of communication networks.

17

win-lose games is just the game graph with all edges reversed, since the formula (11) at v depends
on all S[u] for outgoing edges (v, u) in the game graph, so in the dependency graph, we add (u, v).

The dependency graph of a DP algorithm has a very simple interpretation. It says that before
computing the value of a subproblem S[v], we have to make sure we have already memoized all of the
S[u] where u points to v (i.e., (u, v) is an edge). Otherwise, we cannot evaluate the formula at S[v].
A convenient fact is that there exists a consistent ordering for evaluating DP subproblems, i.e., an
ordering of the vertices such that each subproblem S[v] is evaluated after all of the S[u] it depends
on, iff the dependency graph is a DAG. To show one direction, if the dependency graph is not a
DAG, then there exists a sequence of dependencies (i1, i2), (i2, i3), . . . , (ik−1, ik), (ik, i1), where to
solve subproblem S[i2], we need to have memoized S[i1], etc. If, for the sake of contradiction, there
was a way to evaluate these subproblem solutions consistently, then there must be some vertex
on the cycle whose subproblem we solve first. However, we cannot solve this subproblem, as it
depends on a subproblem that we have not yet solved, a contradiction.

On the other hand, suppose that the dependency graph is a DAG, and without loss of generality
suppose that we have relabeled the vertices in a topological order. We claim that evaluating the
subproblems in sequence one by one, starting from vertex 1 and ending at vertex n := |V |, is a
consistent evaluation order. We prove this by strong induction, where the hypothesis is that all of
the subproblems required in computing S[j] have been memoized when we reach vertex j in the
evaluation order, so we can successfully evaluate S[j]. First, when we evaluate S[1], we do not
require any other subproblems, since there can be no edges (i, 1) in a topological ordering, proving
the base case. Next, for the strong inductive step, suppose that all of the subproblems S[1], . . . , S[j]
have been successfully memoized. When evaluating S[j + 1] in a topological ordering, the formula
can only depend on vertices S[i] for i < j + 1, i.e., i ∈ [j]. These have all been memoized by the
strong induction hypothesis, so we can compute S[j + 1], completing the induction.

It is a good exercise to check that all of the DP algorithms covered in these notes actually induce
dependency graphs that are DAGs. However, the reader can find comfort: as long as you are
convinced that the DP evaluation orders we declared earlier are indeed consistent, the dependency
graph must be a DAG, as we just proved these statements are equivalent.

Single-source shortest paths on DAGs. Finally, for obvious reasons, algorithmic problems
on DAGs are ripe for DP-based solutions: they already come with an evaluation order! We give
a simple example here: the single-source shortest paths problem (SSSP). In this problem, we are
given as input a DAG G = (V,E,w), where the vertices V are in a topological ordering. Our goal
is to compute the minimum possible weight of a path from vertex 1 to vertex j for all j ∈ [n],
where we let n := |V | and m := |E|. That is, we are interested in computing

min
P is a path from 1→j

P⊆E

∑
e∈P

we. (12)

The formula (12) has a natural interpretation as the minimum length of a path from 1 to j, where
we view the weight we as the length of edge e. If it is impossible to reach vertex j from vertex 1
by following a path, we let (12) evaluate to ∞ by default.

We claim that it suffices to define subproblems S[j] for all j ∈ [n], where S[j] is the value of (12)
for a given value of j, initializing S[1] = 0 as the base case and S[j] =∞ for all j 6= 1. We evaluate
these subproblems one by one in incremental order, using the formula

S[j] = min
(i,j)∈E

S[i] + w(i,j). (13)

If there are no such (i, j) ∈ E, we let (13) evaluate to ∞ by default.

To see why (13) is true, any path P to vertex j must include at least one edge (i, j), where
potentially i = 1. If no such edge (i, j) exists, then j is unreachable (from any vertex, not just
from 1), so (12) is ∞. Otherwise, we must take some edge w(i,j), and now our goal is to get from
vertex 1 to vertex i as cheaply as possible, yielding the formula (13). As V is topologically ordered,
i < j, so we have memoized S[i] by the time we need to evaluate S[j] in (13). Notice that this
argument works just fine with negative-weight edges e ∈ E having we < 0; the cheapest way to get
from 1 to j if you are forced to take the edge (i, j) is still to get from 1 to i as cheaply as possible
first. The runtime of our SSSP algorithm on DAGs is O(n + m), since we must evaluate all of the
n formulas (13), and each of the m edges (i, j) ∈ E is used in a formula exactly once.

18

5.3 All-pairs shortest paths
We are now ready to tackle our last DP example: the all-pairs shortest paths (APSP) problem. In
this problem, we are given as input a directed graph G = (V,E,w). Here, G is not necessarily a
DAG. For simplicity, we let n := |V | and m := |E|, and we again identify the vertices V with the
set [n]. Our goal is to compute, for all of the n(n− 1) pairs (i, j) ∈ V × V with i 6= j, the value of

min
P is a path from i→j

P⊆E

∑
e∈P

we. (14)

That is, for all distinct (i, j) ∈ V ×V , we want to compute the shortest path from i to j. Remark-
ably, in the course of tackling this problem, we will combine many of the techniques we have seen
thus far, including multidimensional DP, prefix-based DP, DAGs, and even divide-and-conquer
from Part II of the lecture notes. It is thus a very natural ending topic for the DP unit.

This problem has a straightforward solution on DAGs: run our SSSP algorithm from Section 5.2 n
times, once with each starting vertex. Indeed, for any i ∈ [n], taking the induced subgraph on the
vertices {i, i + 1, . . . , n} results in another DAG, and the SSSP algorithm from Section 5.2 on this
induced subgraph (with shifted indices so that i is the first vertex) gives all of the shortest path
values (i, j) for j > i. Therefore, running the SSSP algorithm with each i ∈ [n] solves APSP on
DAGs in time O(n2 + mn), as each SSSP computation on an induced DAG takes time O(n + m).
Since m ≤ n2, in the worst case, this gives an O(n3) time algorithm for APSP on DAGs.

The main result of this section is that we can solve APSP in O(n3) time, for arbitrary directed
graphs, with one caveat. It turns out that the APSP problem is not well-defined if there exist any
negative-weight cycles, i.e., directed cycles C ⊆ E such that

∑
e∈C we < 0. This is because for any

pair (i, j) such that there exists a i → j path passing through an edge of C, we can loop around
the cycle C as long as we want to decrease the weight of the path arbitrarily. Therefore, for the
remainder of the section, we explicitly assume that the graph G contains no negative-weight cycles.
This lets us use the following helpful lemma, bounding the size of any shortest path.

Lemma 3. Let G = (V,E,w) be a directed graph with no negative-weight cycles. Then for every
pair of vertices (i, j) ∈ V × V with i 6= j, there exists a shortest path from i to j (i.e., a path
achieving the value (14)), with at most n− 1 edges, where n := |V |.

Proof. Let P be the shortest path from i to j using the fewest edges. We claim P has ≤ n − 1
edges. Suppose for contradiction that there are ≥ n edges in P , so there are ≥ n + 1 vertices
involved. By the pigeonhole principle, some i ∈ [n] appears in P at least twice. Thus, there must
be a cycle from i to i in P . This cycle has nonnegative weight, so it must in fact have zero weight,
as otherwise removing it creates a shorter path, contradicting the definition of P . Now, we can
replace P with another shortest i→ j path with fewer edges, also contradicting P ’s definition.

Why is Lemma 3 useful? Consider first what goes wrong if we try to apply the SSSP algorithm
from Section 5.2 to a non-DAG G. The dependency graph corresponding to the DP subproblems
(13) is just G itself, because the solution at every vertex depends on all incoming edges. If G has
a directed cycle, repeatedly trying to compute (12) necessarily results in the implementation issue
described in Section 5.2. This is because unlike in the case of DAGs, for general directed graphs,
there is no notion of “progress” or natural ordering to solve DP subproblems in.

The key idea to break out of this chicken-and-egg problem is to make our own progress measure
by adding an extra dimension (similarly to Section 3.3, where we augmented with the value). In
particular, we will augment with an extra parameter ` that corresponds to the maximum number
of edges allowable in a path. By Lemma 3 we can always bound ` ≤ n− 1. We will solve the DP
subproblems for each value of `, one at a time incrementally, creating a natural ordering.

We now describe our first DP-based solution to APSP more formally. We define a set of DP
subproblems S[i][j][`], for all pairs (i, j) ∈ [n] × [n] with i 6= j, and all possible cardinalities
0 ≤ ` ≤ n− 1 of a shortest path. Our goal is to compute all of the S[i][j][`], where

S[i][j][`] := min
P is a path from i→j

P⊆E
|P |≤`

∑
e∈P

we. (15)

19

That is, compared to (14) we add the additional stipulation that P contains at most ` edges. By
Lemma 3, the slice of the 3-d array S corresponding to ` = n− 1 contains all of the shortest path
lengths, as every shortest path uses at most n− 1 edges, so this restriction changes nothing.

We can now reuse the idea from our DAG SSSP algorithm, since a nonempty i→ j path of length
≤ ` is the combination of its last edge, say (k, j) for some k, and the shortest possible path from
i to k of length ≤ `− 1. Moreover, all of the base cases S[i][j][1] are straightforward to evaluate:
they are either w(i,j) if (i, j) ∈ E, or ∞. Thus, we can use the formula

S[i][j][`] = min
(k,j)∈E

S[i][k][`− 1] + w(k,j), (16)

derived similarly to (13) (but making sure to adjust the ` parameter), in the ordering that solves all
subproblems for each value of ` before incrementing `. This is correct because computing S[i][j][`]
using (16) only depends on values of S[·][·][` − 1], i.e., the previous set of subproblems. Each of
the O(n3) subproblems S[i][j][`] takes O(n) time to evaluate via (16) and memoization of previous
subproblems. Thus, this algorithm for the APSP problem runs in O(n4) time.

Let us apply our interpretation from Section 5.2 to demystify this solution: how did we break the
issue of cycles by using an extra dimension? It turns out that all shortest paths in G are equivalent
to shortest paths in a different layered graph L, which is importantly a DAG.4

The vertex set of L consists of n copies of V , where the `th copy for ` ∈ [n] is denoted V (`) and
viewed as a layer in the graph. Similarly, for all vertices i ∈ [n], we denote the `th copy of i by i(`).
It remains to specify the edges of L. We add n−1 zero-weight “shortcut” edges {(i(`), i(`+1))}`∈[n−1]
for all i ∈ [n], so there is no cost to moving to a copy of the same vertex on any future layer. We
also add copies of all edges E between each pair of adjacent layers V (`) × V (`+1), such that each
original edge (i, j) ∈ E results in n−1 new edges {(i(`), j(`+1))}`∈[n−1]. L is clearly a DAG, because
every edge moves to a future layer, so there is no way of cycling back to an older layer.

We claim that for all (i, j) ∈ V × V , the shortest path distance (14) in G is the shortest path
distance between i(1) and j(n) in L. To see this, given a shortest i → j path in G of length `, we
can take the same edges in L to reach j(`+1), and then take shortcut edges to reach j(n). Similarly,
given a shortest i(1) → j(n) path in L, we can follow the same steps in G, where we make sure to
not move whenever a shortcut is used. Thus, the two problems are indeed equivalent.

Divide-and-conquer. While our APSP algorithm thus far runs in polynomial time, it still falls
short of the O(n3) time algorithm promised at the beginning of the section. Here we give a simple
improvement to our algorithm that brings us within a logarithmic factor. The idea is to divide-
and-conquer. Instead of defining the subproblems S[i][j][`] in (15) to correspond to length-≤ `
paths, we instead let them correspond to length-≤ 2` paths:

S[i][j][`] := min
P is a path from i→j

P⊆E
|P |≤2`

∑
e∈P

we.

By Lemma 3, it is enough to solve these subproblems for 1 ≤ ` ≤ dlog2(n)e. Why can we evaluate
these values quickly? The key observation is that instead of treating a length-≤ 2` path as the
concatenation of a length-1 path and a length-≤ 2`−1 path, we can instead treat it as concatenating
two length-≤ 2`−1 paths, from i→ k and k → j. This yields the recursive formula

S[i][j][`] = min
k∈V

S[i][k][`− 1] + S[k][j][`− 1]. (17)

This still takes O(n) time to compute, but now there are only O(n2 log(n)) subproblems in total
due to our smaller range of `, giving an overall O(n3 log(n))-time algorithm for APSP. Interestingly,
this algorithm is very reminiscent of our “repeated squaring” approach to matrix multiplication in
Section 5.3, Part II. For the interested reader, this point is expanded upon in Chapter 9.7 of [Eri24].

Floyd-Warshall algorithm. It turns out it is even possible to remove this extra log(n) factor. We
briefly summarize a famous result known as the Floyd-Warshall algorithm, originally attributed to
[Flo62, War62] but actually published earlier in [Roy59]. The algorithm is similar to our previous

4We remark that this layered graph is slightly different than the dependency graph of our DP-based APSP
algorithm, because it does not consider each subproblem (i, j) as a vertex. However, it is similarly motivated.

20

algorithms, but overcomes the key issue of each subproblem taking O(n) time to evaluate, as was
the case in (16) and (17). To obtain this improvement, we revisit an old friend: prefix-based DP.

The point of prefix-based DP is to significantly reduce on computation in subproblems, since to
reduce a prefix of a list L[: j] to a smaller prefix L[: j − 1], we only need to make a decision about
the jth entry, and there are typically only 2 options. For example, this idea was used in all of the
formulas (1), (2), (3), (5), and (7), to speed them up to run in O(1) time.

It takes some ingenuity to define the right prefix-based subproblems for APSP, but the Floyd-
Warshall algorithm does exactly this. Specifically, for all pairs (i, j) ∈ [n] × [n] and all possible
prefix lengths k ∈ [n], we define a subproblem

S[i][j][k] := min
P is a path from i→j

P⊆E
P only uses intermediate vertices from [k]

∑
e∈P

we.

Here, we say an i → j path P only uses intermediate vertices from [k] if it consists of the edges
(i0, i1), (i1, i2), . . . , (i`−1, i`), where i0 = i and i` = j, and ia ∈ [k] for all a ∈ [`− 1]. That is, all of
the vertices i1, . . . , i`−1 along the path other than possibly i and j are among the first k vertices.
Because of our restriction to prefixes, these subproblems admit the recursive definition

S[i][j][k] = min (S[i][j][k − 1], S[i][k][k − 1] + S[k][j][k − 1]) ,

which only requires selecting among two options. This is because a shortest path P with interme-
diate vertices from [k] either does not use k (the first term above), or we can assume without loss
of generality that it does so exactly once by the argument in Lemma 3. In this latter case, the
two subpaths formed by splitting P at k both are restricted to intermediate vertices [k − 1] (the
second term above). Each of the O(n3) Floyd-Warshall subproblems can be solved in O(1) time
via memoization, by proceeding incrementally over k, giving our claimed O(n3) runtime.

21

Further reading
These notes contain a collection of famous DP problems, some of which do not appear in previous
standard texts. Here, we summarize additional resources for some of the more common DP prob-
lems that we covered. For general overviews of DP and more examples, see Chapter 14, [CLRS22],
or Chapter 3, [Eri24], or Chapter 6, [KT05], or Chapters 16-18, [Rou22].

For more on Section 3.1, see Chapter 6.1, [KT05].

For more on Section 3.2, see Chapter 3.6, [Eri24].

For more on Section 3.3, see Chapter 3.8, [Eri24] or Chapter 6.4, [KT05] or Chapter 16.5, [Rou22].

For more on Section 4.1, see Chapter 14.4, [CLRS22] or Chapter 3.7, [Eri24].

For more on Section 5.2, see Chapters 6.3 to 6.4, [Eri24] or Chapter 3.6, [KT05].

For more on Section 5.3, see Chapter 9, [Eri24] or Chapter 18, [Rou22].

References
[CLRS22] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-

duction to Algorithms, Fourth Edition. The MIT Press, 2022.

[Eri24] Jeff Erickson. Algorithms. 2024.

[Flo62] Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345,
1962.

[KT05] Jon Kleinberg and Éva Tardos. Algorithm Design. 2005.

[Man75] Glenn K. Manacher. A new linear-time "on-line" algorithm for finding the smallest
initial palindrome of a string. J. ACM, 22(3):346–351, 1975.

[Rou22] Tim Roughgarden. Algorithms Illuminated. Soundlikeyourself Publishing, 2022.

[Roy59] Bernard Roy. Transitivité et connexité. C. R. Acad. Sci. Paris, 249:216–218, 1959.

[Sch61] Craige Schensted. Longest increasing and decreasing subsequences. Canadian Journal
of Mathematics, 13:179–191, 1961.

[War62] Stephen Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11–12,
1962.

[Wik24a] Wikipedia. Longest increasing subsequence. https://en.wikipedia.org/wiki/Longest_increasing_subsequence,
2024. Accessed: 2024-09-08.

[Wik24b] Wikipedia. Maximum subarray problem. https://en.wikipedia.org/wiki/Maximum_subarray_problem,
2024. Accessed: 2024-08-24.

22

	Introduction
	Arrays
	Largest jump
	Largest subsequence sum

	Sets
	Scheduling
	Longest increasing subsequence
	Subset sum

	Strings
	Longest common subsequence
	Longest palindromic substring

	Graphs
	Game theory
	Directed acyclic graphs
	All-pairs shortest paths

